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A new and efficient iteration method for obtaining simultaneously several eigensolutions, 
and even for obtaining only one solution, of a large real-symmetric matrix is presented by 
modifying the simultaneous expansion method by Davidson and Liu. The method is basically 
the Ritz iteration method to correct trial vector(s) simultaneously using correction vectors. 
However, the number of the correction vectors determined in each iteration need not be the 
same as the number of the desired solutions; it is advantageous for the former number to be 
smaller than the latter when many eigensolutions are sought. In addition, trial vectors which 
need not be obtained exactly nor be corrected are included so as to bound the desired 
solutions which are to be obtained exactly from above and/or below (when interior solutions 
are sought). The correction vector space may be kept constant throughout the iterations. 
When the correction vector space has room enough to include the trial vectors of the previous 
iterations, the old trial vectors can serve as expansion vectors. The performance of the 
algorithm is tested for five matrices and is compared with the original Liu-Davidson 
algorithm. The results demonstrate that the present algorithm attains efficient use of memory 
space and reduction of iteration cycles, arithmetic operations and I/O processings. 

I. INTR00ucT10~ 

The relaxation method, which had been originally developed by Southwell [ 1 ] for 
solving coupled linear equations within the framework of the iteration (successive 
approximation) method, was applied to the eigenvalue problem by Cooper 121. 
Large-scale matrix eigenproblems are familiar to quantum chemists in configuration 
interaction calculations of electronic wavefunctions of atoms and molecules. Several 
quantum chemists [3-51 have adopted the relaxation method for the diagonalization 
of large Hamiltonian matrices. The original relaxation method, i.e., the coordinate 
relaxation method, improves one element in the trial vector at a time based on the 
linear (first-order) minimization of the Rayleigh quotient (expectation value of the 
Hamiltonian, in quantum mechanics) or the linear vanishing of the residual. Within 
the coordinate relaxation algorithm, Shavitt et al. [6] corrected the trial vector based 
on the quadratic (exact) minimization of the Rayleigh quotient. Their method, which 
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is called the method of optimal (coordinate) relaxations (MOR), is the most widely 
used algorithm for the non-degenerate lowest eigenproblem in quantum chemistry. 

A modification of the coordinate relaxation method has been presented: the 
simultaneous improvement of several elements in the trial vector [7,8]. This group- 
coordinate relaxation method is a natural extension of the two-by-two Ritz iteration 
algorithm [2], and can also be effective in resolving convergence difficulties for 
nearly degenerate eigensolutions. 

Algorithms to generate only one correction vector to improve all elements in the 
trial vector at a time have also been presented. The gradient method by Hestenes and 
Karush [9] is based on the two-by-two Ritz iteration algorithm, but gives much 
poorer convergence than the above-mentioned relaxation methods. In order to remedy 
the gradient method, generation of a series of correction vectors (expansion vectors) 
is necessary. The Lanczos method [lo], which originally is a modification of the 
power method based on the Krylov sequence, can be regarded as an extension of the 
gradient method. The Lanczos method has some weak points but is widely used, 
especially by nuclear physicists. 

Another algorithm for generating only one correction vector to improve all 
elements in the trial vector has been used, in which the correction vector has 
individual coordinate relaxations. In quantum chemistry we can regard the 
variational perturbation method [ 3, 111 as its origin. This algorithm may be better 
than the gradient method, but undoubtedly gives slower convergence than the relax- 
ation methods which continuously update a trial vector as soon as one or several 
eiements are corrected. In order to improve this algorithm and the Lanczos method, 
Davidson [ 121 proposed the use of this type of correction vectors as expansion 
vectors in a Lanczos-like algorithm. Davidson’s method overcomes the convergence 
difficulties for nearly degenerate eigensolutions by solving a small eigenvalue problem 
within the expansion space, and is widely used by quantum chemists as well as the 
MOR 161. 

Some schemes [6] for obtaining higher eigensolutions have been proposed within 
the above-mentioned methods. In the methods adopting Ritz iteration, the 
orthogonality-constraint procedure [6,9] of the trial vector to lower eigenvectors is 
effective; in the other methods, the root-shifting procedure [ 61 to mimic the deflation 
is effective. Against these procedures, the variance minimization version [ 131 of 
MOR and the root-homing version [ 141 of Davidson’s method make possible the 
direct determination of higher eigensolutions without knowledge of the exact lower 
ones. 

Recently new methods for obtaining several eigensolutions, not based on the 
sequential iteration algorithms which require knowledge of the exact lower solutions 
in advance, but based on a simultaneous iteration algorithm for all the trial solutions 
to be corrected, have been developed in order to improve computational efficiency [ 8, 
15-201. Clint and Jennings [15] combined the power method with a Ritz-like 
diagonalization algorithm. Cheung and Bishop [8] corrected several trial vectors 
simultaneously within the group-coordinate relaxation method. Raffenetti [ 161 and 
Liu [ 171. (See also Ref. [ 181) h ave proposed simultaneous versions of MOR and of 
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Davidson’s method, respectively. Golebiewski [ 191 combined the power method with 
a new orthogonalization procedure, but his method is basically equivalent to the 
single-premultiplication version of the Jennings method [ 151. Iwata [20] proposed the 
simultaneous gradient method without explicit orthogonalization among trial and 
correction vectors and even previously obtained eigenvectors. 

The Ritz iteration algorithm becomes more powerful as the correction vector space 
is increased. The simultaneous group-coordinate relaxation method [8] keeps the 
number of correction vectors fixed in each group; on the other hand, the 
Liu-Davidson method [ 12, 17, 181 increases the number of correction vectors by the 
number of desired solutions in each iteration cycle. The latter method has the disad- 
vantage of increased memory requirements. In the present work, modification of the 
Liu-Davidson method is proposed for obtaining one or simultaneously several eigen- 
solutions combined with the simultaneous group-coordinate relaxation method. The 
essence of the modification is that the number of the correction vectors determined in 
each iteration need not be the same as the number of the desired solutions and that 
additional trial vectors are used in order to prevent variational collapse of higher 
eigensolutions. The advantage of the proposed method is clearly shown for live test 
matrices. 

II. MODIFICATION OF THE LIU-DAVIDSON METHOD 

1. Scheme 

The method proposed in the present work is basically the Ritz iteration method to 
correct trial vector(s) simultaneously using correction vectors and keeps the number 
of correction vectors fixed throughout the iteration cycles. Correction vectors for trial 
vectors are individually evaluated in each iteration cycle according to the 
Liu-Davidson method [ 12, 17, 181, but unimportant constituents of the correction 
vectors obtained in the previous iteration cycle are neglected in the next cycle. This 
point is different from the Liu-Davidson expansion method in which the correction- 
vector space used in an iteration cycle is basically always (within the limits of the 
main-memory space admitted) included in the successive iteration cycles. The 
purpose of including constituents of old correction vectors in the Ritz iteration does 
lie in the optimal extra- or inter-polation. A criterion for important constituents of the 
correction vectors is their contribution to corrections for the trial vectors; that is, the 
trial vectors improved in the previous iteration cycles include important constituents 
of the correction vectors. The present algorithm does not keep old correction vectors 
but keeps old trial vectors in the successive iteration cycles. 

When only the lowest eigensolution is desired, it is preferred to choose the number 
of trial vectors to be greater than 1, because trial vectors for the higher (second, third, 
and so on) eigensolutions are important to exclude constituents of the higher 
solutions from a trial vector for the lowest one and to bound the lowest solution from 
above. Here, the higher solutions need not be obtained exactly and correction vectors 
are all for the lowest solution. This discussion is valid not only for the cases in which 
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some lowest solutions are desired but also for one or several interior solutions. In the 
latter case, trial vectors for lower solutions than those desired are always necessary to 
bound the solutions from below and to avoid variational collapse to the lower 
solutions. 

2. Procedure 

The equation to be solved is XC = CE. X is a large real-symmetric matrix 
(dimension N x N) having real eigenvalues E, and eigenvectors C, (k = 1 - nsolV ; 
II solv = n exact + %pprox ). The number of approximate eigensolutions, which need not 
be obtained exactly, is napprox, and the number of desired exact solutions is nexact. 

A. Initialization 
1. Form initial trial vectors Cp) and the Rayleigh quotients ET’ 

(k = 1 - %,l”)~ 
2. Form D”’ = XC(‘), where D”’ and C”’ are of N x nsolv dimension. 

3. Form the initial residual vectors q$’ = Die’ - E~“‘C~o’, (k = 1 - nexact). 

4. Form the initial correction vectors by’ = (Xdias - EjP’I)-’ . qp’, 
(k=l-n exact), where the diagonal matrix Xdiag has the diagonal elements of X. (If 
the maximum number of correction vectors, ncorr, is greater than nexact, scatter bL”’ 
(k = 1 - nexact) over b(O) (N x PZ,,,, dimension) or add ncorr - nexact coordinate 
vectors.) 

B. Iteration (i = 0, l,...) 

5. Form the orthonormalized correction vectors Cc&, from b”’ by Schmidt 
orthogonalization; then, ‘(C”‘, C&) . (C”‘, C&) = I. 

6. Form D$, = XC::,,. 

7. Form H”’ = ‘(C”‘, C$,,) . (D”‘, D$,,), and solve the reduced eigenvalue 
problem (Ritz iteration) of nsolv + ncorr dimension. H(i)T(i.itl) = E”+t”T”.i+ 1). In 

this step the root-homing pattern search [ 141 is incorporated. 
$3. Form C”t 1) = (C(i), Cr’),) . T”.‘+” and ,,“+I’ = (D(i), DC;,,) . T",'t 1). 

9. Form qt”‘= DC+‘) - Eftl’Cff”, and check convergence by ]qc’“]‘, 
(k = 1 - nexact). 

10. Form bf”’ = (XdiaE - Ef+“I)-’ . qf+” for unconverged Ctt ‘I. If 
n corr > %xact - nconv (%” is the number of converged solutions), fill but’) with C”’ 
and, if necessary, C,,,, (i) for unconverged solutions. 

11. Return to step 5 with i = i + 1. 

3. Some Comments 

It is preferred that the large real-symmetric matrix X to be diagonalized should be 
rearranged with the low-lying diagonal elements Xdiag near the beginning when the 
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matrix X is diagonally dominant, because it is easy to construct initial trial vectors 
for lowest eigensolutions by solving the small eigenvalue problem for the submatrix 
x(O) of N BUeSS dimension (step 1). The off-diagonal elements of X need not be used in 
any specific sequence; then, only nonzero elements (semimatrix) can be stored in 
auxiliary memory. (A specific sequence might be required in a certain type of array 
processors.) 

The X matrix multiplication steps (2 and 6) are time-determining, even if limited to 
nonzero multiplication, and are bound by the Z/O processing. In Davidson’s method 
and its modifications multiplication and accumulation per one off-diagonal element 
are performed only twice per iteration cycle. The present algorithm, in which the 
multiplication and accumulation are performed simultaneously in proportion to nsolv 
or %orr per only one read-processing of large-matrix elements, is capable of avoiding 
being I/O bound; this is very important in using recent and near-future array 
processors. 

In order to avoid round-off errors, explicit orthogonalization is required even 
among trial vectors C”’ in step 5, and the procedure D”’ = XC’” (step 6’) is 
required before step 7. In the program EMORl [ 2 11, the explicit orthogonalization 
and step 6’ are performed every iteration cycle and every fifth cycle, respectively. 
Because the Schmidt orthogonalization procedure is completely array processing- 
adapted, its computational time is negligible compared with the X matrix 
multiplication. 

The computer program (named EMORl) coded in FORTRAN 77 by the present 
author is available in the Computer Centre of the University of Tokyo [2 11. The 
small eigenvalue problems in steps 1 and 7 are solved with a Householder-bisection- 
QR-inverse-iteration routine modified from the original version [22] by the present 
author so as to adapt it for array processing. In the present version of EMORl on the 
HITAC M-280H computer with an integrated array processor (IAP) of the Computer 
Centre the maximum values for parameters are as follows: N,,,,, < 750; 
W? %,I” + %rr 1 ) < (13000, 26), (20000, 17), or (30000, 10). The extension to non- 
symmetric matrix eigenproblems and generalized eigenproblems (XC, = E,YC,) is 
under consideration. 

III. TEST PROBLEMS 

1. Results 

The program EMORl was applied to five test matrices. The structure of the 
matrices, which are the original Nesbet [4] (matrix X,) and modified Nesbet matrices 
(X, - X,), is summarized in Table I. Eigenvalues for the matrices are summarized in 
Table II. 

In Tables III, IV and V, test results for many sets of parameters in the matrices 
X, , X, and X, are shown, respectively. Throughout these examples N,,,,, is equal to 
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TABLE I 

The Structure of Test Matrices” 

Matrix elements No. of Diagonal 
Matrix Dimension nonzero dominance Density 

X N xii X,(= X,i) elements (%) (96) 

X, 300 2i- I 1 45150 100 100 
Xl 300 1.0fO.l x (2i- 1) 1 45150 96.0 100 
X3 300 1.00+0.01x(2i-1) 1 45150 68.8 100 
X4 1000 2iL 1 1,/i- j l < 50 48775 100 9.75 
X5 1000 1.0+0.1x(2i-1) I 0, Ii-j1 > 50 48775 98.8 9.75 

’ Diagonal dominance = fraction of the cases which satisfy that IX’,,1 ( /Xi, ~ X,il: density = ratio of 
non-zero elements. 

n soly and napprox is zero. The maximum value of 1 qf’ /’ is rather large. We solved the 
problems from such poor initial guesses because eigenvalue problems for matrices of 
x300 dimension can be easily solved by standard direct-diagonalization algorithms. 
For the matrix X, the condition that ncorr = nexact is quite enough except when 
n exact = 1. The condition that ncorr = nexact/2 is sufftcient when nexact 2 8. On the 
other hand, the condition that ncorr = nexact is not sufficient when nexact 5 6 for X2 
and even when nexact = 10 for X,. For X, the parameter ncorr should be chosen to be 
at least 4 . nexact (n exact < 3) and about 12 (n exact > 4); that is, the number of effective 
correction vectors does not depend on nexact when nexact becomes large. 

TABLE II 

Lowest Eigenvalues of Test Matrices 

n 

1 0.2355346 0.1296170 0.01303906 0.279188 1 -4.456670 
2 2.262109 0.3336875 0.03346562 2.316219 -2.594780 
3 4.27845 1 0.5362786 0.05373813 4.339914 0.07319100 
4 6.290699 0.7382596 0.07394690 6.358201 0.2732267 
5 8.300687 0.9398978 0.09411976 8.373496 0.4739468 
6 I@.30922 1.141313 0.1142692 10.38687 0.6756589 
7 12.31674 1.342569 0.1344020 12.39891 0.8781389 
8 14.32349 1.543706 0.1545223 14.40997 1.081195 
9 16.32966 1.744750 0.1746327 16.42027 1.28469 1 

10 18.33535 1.945719 0.1947352 18.42997 1.488534 

X, X3 
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TABLE III 

Test Results” for Matrix X, 

2 

4 

6 

8 

10 

15 

20 

1 
2 
3 
2 
3 
2 
4 
3 
6 
4 
8 
5 

10 
5 

10 
5 

10 

N B”CSS 

1 

2 
qguess 

0.299 lo+” 

2 0.508 lo+’ 

4 0.917 lo+’ 

6 0.132 lo+” 

8 0.173 10L1 

10 0.213 10” 

15 0.311 lo+” 

20 0.407 10’” 

~-6) “[,(--lo) 

>20 
6 
5 
4 
3 
8 
3 
5 
2 
5 
2 
4 
2 
5 
3 
5 
4 

9 
7 
6 
4 
9 
5 
8 
3 
6 
3 
5 
2 
6 
5 
6 
5 

Note: s:,,,,, maximum value of / qp’l’ for initial trial vectors; ni,(-x), number of iterations required 
for converging qi to less than lo-“. 

On so,\ = nexact : namely, naaprox = 0. 

TABLE IV 

Test Results” for Matrix X, 

1 1 1 0.299 10tZ >20 
2 10 
3 7 
4 6 

2 2 2 0.594 10” >20 
4 5 
6 4 

4 4 4 0.118 lo+’ 7 
6 3 
8 3 

6 6 6 0.175 lo+4 4 
9 2 

8 8 8 0.232 lot4 3 
12 2 

10 10 10 0.289 lo+’ 2 
15 2 

16 
12 

9 

I1 
6 

11 
5 
3 
8 
3 
5 
2 
4 
3 

” nsolv = nexset ; napprox = 0. 
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TABLE V 

Test Results’ for Matrix X, 

1 2 
3 
4 

2 4 
6 
8 

4 6 
8 

12 
6 6 

9 
12 

8 8 
12 
16 

10 10 
15 

1 0.299 lo+’ 13 
11 

9 
2 0.595 lo+’ 9 

6 
c J 

4 0.119 lot4 >20 
3 
3 

6 0.176 IO+’ >20 
3 
3 

8 0.233 lo+’ >20 
3 
2 

10 0.289 lot4 9 
2 

>20 
>20 

17 
>20 
>20 

9 

9 
4 

6 
5 

4 
3 

15 
4 

nn sni, = Hexact ; napprox = 0. 

Results of eigenvalue problems for the matrices X, and X, are shown in Tables VI 
and VII, respectively. Throughout these examples, napprox = 0 and the parameter 
n exact is fixed at 10; the parameters N,,,,, and ncorr are varied. For the matrix X, 
when N,,,,, = 10, the conditions ncorr = 20 and 30 give the same result. The reason is 
that near linear dependence among correction vectors is encountered when ncorr 2 20. 
The condition (N,,,,,, ncorr) = (50, 20) or (100, 10) is sufficient. When N,,,,, = 200, 
the problem is nearly solved at the initial stage. For the matrix X,, the lowest two 
eigenvalues are unusual (Table II). The parameter N,,,,, should be chosen to be at 
least ~100 and in practice ~300. 

Results of interior-eigenvalue problems for the matrix X, are shown in Table VIII, 
where the initial trial vectors are unit vectors. The parameter nsolv corresponds to the 
number of solutions from the lowest (root 1) to the highest to be obtained either 
exactly or approximately. Added trial vectors to bound desired solution(s) from 
above improve convergence slightly; on the other hand, trial vectors to bound interior 
solution(s) from below work very well though the corresponding solutions are not 
converged at all, and convergence behaviors change little by comparison with the 
lowest-eigenvalue problems. 

2. Discussion 

The choice of the parameters N,,,,, and ncorr is quite important for efficiently 
solving eigenproblems. The larger Nguess, the better is convergence; on the other 



TABLE VI 

Test Results” for Matrix X, 

n 501\ 

IO 

10 

10 
10 

ncorr 

10 
20 
30 
10 
20 
10 
10 

N #UC\\ 

10 

50 

100 
200 

(IWY 

0.327 10’ 

0.457 lOi 

0.481 10 
0.188 10~ 

flu-6) n,,(-10) 

13 16 
6 8 
6 8 
8 10 
6 8 
5 8 
I 2 

Test Results” for Matrix X, 

nS”l\ 

10 

10 

10 

10 

ncorr 

10 
20 
30 
10 
20 
10 
20 
10 

N p,“CI\ 

100 

200 

300 

400 

2 
qgw\\ 

0.369 lo+’ 

0.801 10” 

0.154 10 * 

0.153 1om5 

n,,(-6) %-lo) 

>20 
17 >20 
13 17 
17 >20 
10 16 

6 12 
4 8 
2 4 

‘n IO,” = %xac, ; n - - approx 0. 

TABLE VIII 

Test Results” for Matrix X, 

nenact(Root No.) *SOI\ ncorr n,,(-6) %-lo) 

l(1) 1 

3 

5(1- 5) 5 

lO(l- 10) 10 

‘(5) 5 

I 
5(6 - 10) 10 

13 

1 >20 
3 9 
5 8 
3 8 
5 7 
5 15 
1 9 

10 8 
10 13 
15 7 
20 7 

3 8 
5 7 
3 8 
5 16 
7 9 

IO 8 
7 7 

12 
11 
11 
10 

>20 
13 
11 
18 
11 

9 
12 

9 
10 

220 
12 
12 
11 

’ Nws = 0; namely, the initial vectors are unit vectors. 
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hand, convergence is not improved when ncorr is too large. An optimum value for the 
parameter ncorr is strongly dependent on the problem (the structure of the matrix). 
The value q:,,,, is a criterion in determining an optimum ncorr. When IZ,,,,~ is greater 
than ~10, we may choose ncorr to be nearly constant (less than nexact). This feature 
results in a similar approach to the group-coordinate relaxation method [7, 81. 

In Table IX convergence behavior of the present algorithm is compared with the 
original Liu-Davidson algorithm in the same problem by imposing the same 
convergence criterion as in Ref. [ 171. The present algorithm needs only four 
correction vectors in order to solve the problem with the same number of iterations as 
taken in the Liu-Davidson algorithm [ 171; it is not necessary at all to expand ncorr 
up to 16. 

The additional trial vectors to bound desired solutions from above are not so 
important; in any case, two or three vectors may be sufficient to improve 
convergence. For the interior-eigenvalue problem, all the initial trial vectors to bound 
the desired solutions from below are necessary, but correction vectors for the 
additional trial vectors are not necessary at all. The number of iterations is almost the 
same as for the lowest-eigenvalue problems. The present algorithm for directly deter- 
mining higher eigensolutions seems superior to the method proposed by Butscher and 
Kammer [ 141 because theirs requires more iteration steps and correction vectors. 

If the number nexact of eigensolutions to be sought is too large to store all the 
vectors of flexact + ncorr in the main-memory, partitioning, such as nexact = nexact , + 
n exact 2 + . . . 2 is required and the problem is solved for nexact , , nexac, 2, and so on, 
sequentially from the lower solutions. Converged eigenvectors are saved in auxiliary 
memory. They are read out and used only at Schmidt orthogonalization step (step 5). 

The present algorithm has advantages to use memory space efficiently and to 
reduce iteration steps, arithmetic operations and I/O processings. 

TABLE IX 

The Comparison with the L&Davidson Algorithm for the Same Problem” 1 17 1 

~sol”(= %mr) *rorr N P”C\\ n,, 

This work 4 3 --1++- 3 5 6 
4+4+4+4 4 

5-5-5 3 
6-6-16 3 

l-7 2 

Ref. [ 171 4 4-t&+12+16 5 4 

o xii = x,i = 1, l<i<j<250 

l<i<5 

6 < i < 250. 
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